Residual categories of quadric surface bundles
Fei Xie (Edinburgh)
Abstract: The residual category (or the Kuznetsov component) of a quadric surface bundle is the non-trivial component in the derived category. It is equivalent to the twisted derived category of a double cover over the base when the quadric surface bundle has simple degeneration (fibers have corank at most 1). I will consider quadric surface bundles with fibers of corank at most 2 and describe their residual categories as (twisted) derived categories of some scheme in two situations: (1) when the bundle has a smooth section; (2) when the total space is smooth and the base is a smooth surface. The results can be applied to describe the residual categories of a (partial) resolution of nodal quintic del Pezzo threefolds, cubic fourfolds containing a plane and certain complete intersections of quadrics.
algebraic geometrycombinatorics
Audience: researchers in the topic
Online Nottingham algebraic geometry seminar
Series comments: Online geometry seminar, typically held on Thursday. This seminar takes place online via Microsoft Teams on the Nottingham University "Algebraic Geometry" team.
For recordings of past talks, copies of the speaker's slides, or to be added to the Team, please visit the seminar homepage at: kasprzyk.work/seminars/ag.html
| Organizers: | Alexander Kasprzyk*, Johannes Hofscheier*, Erroxe Etxabarri Alberdi |
| *contact for this listing |
